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Homogene Zirconocenkatalysatoren sind von groBer Be-
deutung fiir die Olefinpolymerisation. Gegenwirtig wird zur
Polymerisation von Ethen mit diesen Katalysatoren meist die
Methode von Kaminsky et al. verwendet, die eine bemer-
kenswerte Steigerung der katalytischen Aktivitédt bei Zusatz
von Wasser beobachteten.!"! Diese Beobachtung fiihrte
schlieBlich zur Entdeckung der oligomeren Methylalumin-
oxane (MAOs) als hocheffizienten Aktivatoren,? die der
Ziegler-Natta-Katalyse neue Impulse gab und die Ara der
Single-Site-Ziegler-Natta-Katalysatoren einldutete.
Mechanistische und kinetische Untersuchungen fiihrten
zu dem allgemein akzeptierten Reaktionsmechanismus, der
in Schema 1 dargestellt ist. Bei Zugabe von MAO zu einer
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Schema 1. Vorgeschlagener Mechanismus der Ziegler-Natta-Polymerisation von C,H, mit dem

homogenen Katalysator [Cp,ZrCl,]/MAO. Cp = Cyclopentadienyl.

Losung von [Cp,ZrCl,] (1) in Toluol wird in einem schnellen
Ligandenaustausch zuerst die Monomethylverbindung
[Cp,ZrCH;CI] (2)F! und mit einem Uberschuss an MAO
[Cp,ZrMe,] (4) gebildet.” Abspaltung des Chlorsubstituen-
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ten von 2 oder eines Methylrestes von 4 durch MAO gibt die
katalytisch aktive lonenpaarspezies [Cp,ZrCH;]* (5) mit dem
Gegenion X-[Al(Me)O-],” (X=Cl, Me),’®! wie Festkorper-
rontgenphotoelektronenspektroskopische (XPS)H! und "*C-
NMR-spektroskopische® Untersuchungen zeigten; dies
wurde auch durch *'Zr- und *C-NMR-spektroskopische Un-
tersuchungen von [Cp,Zr(CH;),]/MAO-Losungen bestitigt.”!
Kation § ergibt in Gegenwart von Ethen tiber den i-Komplex
6 das Insertionsprodukt 7 (n =1) als erstes Zwischenprodukt
des Polymerisationsprozesses, gefolgt von einer Schritt-fiir-
Schritt-Insertion von Ethen zu den Alkylzirconocenkationen
7 (n=2, 3, ...n). Eine B-Eliminierung liefert das ungerad-
zahlige Polymer 8 mit einer endsténdigen C-C-Doppelbin-
dung und das Zirconocenhydridkation 9, das die Polymeri-
sation liber die Zirconocenkationen 10 zum geradzahligen
Polymer startet.’) Es gibt allerdings experimentelle Hinweise
darauf, dass die generelle Klassifizierung des Zirconocen/
MAO-Katalysatorsystems als Single-Site-Katalysator zu stark
vereinfacht ist.”

Die Elektrospray-Ionisations-Massenspektrometrie (ESI-
MS) entwickelt sich schnell zu einer wichtigen Technik fiir die
Untersuchung chemischer Reaktionen in Losung,® darunter
homogen katalysierte Reaktionen!"") und das Hochdurchsatz-
Screening homogener Katalysatoren.'!! Feichtinger et al.'?

berichteten iiber ESI-tandemmassen-
spektrometrische Untersuchungen
(ESI-MS/MS) von Ziegler-Natta-Oli-
gomerisierungen von Olefinen durch
Alkylzirconocenkationen, die durch

+ Reaktion von [Cp,Zr(CH,),] mit Bor-
_ CoHy . . .

[x-mMa0] — basierten = Aktivatoren  generiert

X=CHj, Cl wurden."”! Chen studierte die Poly-

merisation von Ethen mit dem Kata-
lysator [Cp,ZrCL,]/MAO. Die Reakti-
on wurde durch Zugabe von N,N-
Dicyclohexylcarbodiimid (DCC) ge-
stoppt, und die Produkte wurden mit
+ ESI-MS untersucht.!"!

ESI setzt normalerweise Ionen
frei, die zuvor in Losung gebildet
wurden;!'" daher erwarteten wir, dass
die transienten ionischen Spezies §
und 9 sowie die verschiedenen Spezies
7 und 10 (Schema 1) durch ESI-MS in
der reagierenden Losung unter Quasi-
stationarititsbedingungen trotz des hohen Uberschusses
nichtionischer Spezies nachweisbar sein sollten. ESI zeichnet
sich auch dadurch aus, dass die Ionen unter sehr milden Be-
dingungen gebildet werden, sodass auch sehr labile Molekiile
in die Gasphase transferiert werden konnen.['”!

Hier berichten wir iiber unsere Untersuchungen zur
Ziegler-Natta-Polymerisation von Ethen mit dem homogenen
Katalysator [Cp,ZrCL]/MAO und einem Mikroreaktor, der
direkt an die ESI-Quelle eines Q-TOF-Massenspektrometers
gekoppelt ist. Unsere Hauptziele waren der direkte Nachweis
und die massenspektrometrische Charakterisierung der
transienten kationischen und katalytisch aktiven Spezies
sowie die direkte Demonstration ihrer katalytischen Aktivi-
tat.
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Zunichst untersuchten wir die Bildung der katalytisch
aktiven Spezies 5 in einer Losung, die aus 1 und MAO in
Toluol nach Literaturvorschrift hergestellt wurde. Die
Analyse der Toluollosung mit dem Katalysator ergab ein
schlechtes Spektrum mit geringer Ionenintensitét, da Toluol
kein gutes Solvens fiir den ESI-Prozess ist. Wurde die Losung
dagegen online mit Acetonitril in einem Mikroreaktor ge-
mischt (Abbildung 1), konnte ein sehr sauberes Spektrum

H,C=CH,
(in Toluol)

@r—(CHZCHZLCHa}
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Abbildung 1. Mikroreaktor, der online an die ESI-Quelle gekoppelt ist.
Im ersten Mikromischer (links) wird der zuvor gebildete Katalysator
[Cp,ZrCl,)/MAO (1:1.2 Aquiv.) kontinuierlich mit C,H, gemischt, was
die Polymerisation initiiert; dabei liegen sowohl Katalysator als auch
C,H, in Toluol vor. Die Reaktion erfolgt in der Kapillare, die die reagie-
rende Lésung in den zweiten Mikromischer (rechts) transferiert, wo
die Reaktion durch Vermischen mit MeCN gestoppt wird und von wo
die Reaktionsl3sung kontinuierlich in die ESI-Quelle eingespeist wird.

erhalten werden.''® Dieses zeigte fiinf Zr-haltige kationi-
sche Spezies, die durch das Isotopenmuster sehr leicht iden-
tifiziert werden konnten: 5 (m/z 235), [Cp,ZrCl]* (m/z 255),
5MeCN (m/z 276), [Cp,ZrCI-MeCN]* (m/z 296) und
[Cp,Zr]* (m/z 220; Abbildung 2).*!

Ion 5 wurde durch stoBinduzierte Dissoziation (CID)
charakterisiert. Die Spaltung der Zr-CH;-Bindung ergibt ein
intensives Fragment-Ion von m/z 2201'>% (Abbildung 3a).
Die mit Acetonitril komplexierten Ionen 5-MeCN und
[Cp,ZrCl-MeCN]* spalten durch CID sehr leicht MeCN unter
Bildung der Kationen 5 (Abbildung 3b) und [Cp,ZrCl]*
ab.?22 Diese CID-Ergebnisse weisen darauf hin, dass 5 und
[Cp,ZrCl]*, die im ESI-Massenspektrum (Abbildung 2) be-
obachtet werden, wahrscheinlich durch Fragmentierung in
der ESI-Quelle (in-source decay) der entsprechenden
Acetonitril-Addukt-Ionen gebildet werden; auf dieselbe
Weise entsteht [Cp,Zr]t durch Fragmentierung von 5.

Die Bildung von § in Losung ist eine schnelle Reaktion.
So wurde beim Mischen einer Losung von 1 und MAO, beide
in Toluol, in einem Mikroreaktor und dem anschlieBenden
Mischen dieser Losung nach 1.7 s Reaktionszeit mit Aceto-
nitril in einem zweiten Mikroreaktor (Abbildung1) ein
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Abbildung 2. Positiv-ESI-Massenspektrum einer Lésung von
[Cp,ZrCl,]/MAO (1:1.2 Aquiv.) in Toluol nach Online-Mischen mit
MeCN.
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Abbildung 3. Positiv-ESI-MS/MS-Spektren von intermedidren Zircono-
cenkationen; a) 5 mit m/z 235, b) 5-MeCN mit m/z 276, c) 7 (n=1)
mit m/z 263, d) 7 (n=20) mit m/z 796 (exakte Masse 795.6324).
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Massenspektrum erhalten, das dem in Abbildung2 sehr
dhnlich ist.

Zum direkten Nachweis, dass 5 tatsdchlich die katalytisch
aktive Spezies ist, studierten wir die Gasphasenreaktion des
im Quadrupol selektierten monoisotopischen Ions 5 mit m/z
235 in der StoBzelle des Q-TOF mit Ethen.”?! Die Analyse
der Produkt-lonen wurde mit dem TOF-Analysator durch-
gefiihrt.™ Bei StoBen mit niedriger Energie (1.1-2.0 V) rea-
gierte das massenselektierte und relativ kalte Ion § in der
StoBzelle unter Insertion von bis zu vier Molekiilen Ethen in
guter Ausbeute zu den kationischen Produkt-Ionen 7 (n=1-
4; Abbildung 4a).1%26:27

In einer zweiten Reihe von Experimenten untersuchten
wir die Polymerisation von Ethen durch Mischen einer
Losung von 1 und MAO in Toluol mit einer gesittigten
Losung von Ethen in Toluol. Die reagierende Losung wurde
mit MeCN gestoppt (Abbildung 1).”! Das Spektrum zeigt
vier Ionenserien (Abbildung 5): die ungeradzahligen Serien 7
(n=1-31) und 7-MeCN (n=1-31) sowie die geradzahligen
Serien 10 (7 =8-31) und 10-MeCN (n =7-29). Es ist bekannt,
dass in MeCN keine Polymerisationsaktivitidt zu beobachten
ist.””! Wir postulieren, dass beim Mischen mit MeCN, das
etwa 1.7 s nach dem Start der Reaktion von § und C,H, in
Toluol erfolgt, alle katalytisch aktiven Intermediate® durch
Blockierung des leeren d’-Zr-Orbitals durch das Losungs-
mittel abgefangen werden,® wie in Abbildung 6 gezeigt.

Eine Reihe von Ionen, die in diesem Experiment beob-
achtet wurden, wurde durch CID-Experimente weiter cha-
rakterisiert. So spaltet 7 (n =1) mit m/z 263 hauptséchlich H,
ab, wobei [Cp,Zr(Ally)]* mit m/z 261 entsteht (Abbil-
dung 3¢).B"! Ein dhnliches Verhalten im CID-Experiment
wird fiir die meisten Ionen 7 und 10 beobachtet.”” Ionen mit
hoheren Alkylgruppen, z.B. 7 (n=20) mit m/z 796, ergeben
zwei aufeinander folgende Abspaltungen von H, zu den
Fragment-Ionen mit m/z 794 und 792 (Abbildung 3d). Die
MeCN-Addukt-Ionen zeigen &hnliche Fragmentierungen
nach der Abspaltung von MeCN. Beispielsweise spaltet
7-MeCN (n=21) mit m/z 865 MeCN unter Entstehung des
Fragment-Tons 7 (n=21) mit m/z 824 ab, das durch zweima-
lige Abspaltung von H, weiter fragmentiert (Spektrum ist
nicht abgebildet).

Alle Tonen 7 und 10 sollten katalytisch aktiv, die Aceto-
nitril-Addukt-Ionen dagegen inaktiv sein. Dies wurde durch
Untersuchung ihrer Reaktion mit Ethen in der Gasphase
direkt gezeigt. Ion 7 (n=1) mit m/z 263 (die kritischste Ver-
bindung in Bezug auf die H,-Abspaltung)'? addierte vier
Molekiile Ethen zu den Produkt-Ionen mit m/z 291, 319, 347
und 375 (Abbildung 4b). Auch die Ionen 7 mit n=3, 10, 20,
die aus der Losung erhalten wurden, inserierten C,H,, wie fiir
7 (n=20) mit m/z 796 in Abbildung 4c gezeigt ist. Die ge-
radzahlige Spezies 10 (n =16) mit m/z 669 war ebenfalls ka-
talytisch aktiv und ergab zwei Insertionsprodukte mit r/z 697
und 725 (Abbildung 4d). SchlieBlich ist die Reaktion von
7-MeCN (n=21) mit m/z 865 interessant, da zuerst MeCN
abgespalten wird, wobei Kation 7 (n=21) mit m/z 824 ent-
steht; dieses ist katalytisch aktiv und inseriert Ethen zu dem
Produkt-Ton 7 (n =22) mit m/z 852 (Abbildung 4¢).*

[Cp,ZrCH;]" (5) konnte in der Reaktionslésung von
[Cp,ZrCl,] und MAO durch ESI-MS nachgewiesen und durch
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Abbildung 4. Nachweis der katalytischen Aktivitit in der Gasphase:
MS/MS-Massenspektren der Produkt-lonen der Reaktionen von Ethen
mita) 5, b) 7 (n1=1), ¢) 7 (n=20), d) 10 (1=16) und e) 7-MeCN
(n=21).

MS/MS charakterisiert werden. Die katalytische Aktivitét
wurde direkt durch Ionen-Molekiil-Reaktion von § und
Ethen in der Gasphase gezeigt. Weiterhin konnten wir erst-
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Abbildung 5. Ziegler-Natta-Polymerisation von Ethen: Positiv-ESI-Massenspektrum der mit

MeCN gestoppten Reaktionslésung von [Cp,ZrCl,]/MAO (1:1.2 Aquiv.) und C,H, (siehe Abbil-
dung 1). Das Spektrum zeigt die ungeraden und die geraden {Cp,Zr}-Alkyl-Spezies sowie die
MeCN-Addukte. Die Gesamtreaktionszeit betrug ca. 1.7 s. Das mit m markierte lon ist ein ka-

talytisch inaktives Zirconocen-Dimer.

@ _(CHCH3),CH3
%% %CHz
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Abbildung 6. MeCN-Koordination an die Zr-Kationen 7, wodurch die
fur die Katalyse entscheidende freie Koordinationsstelle (single-site)
blockiert wird, was weitere Additionen verhindert.

mals mithilfe eines Mikroreaktors, der direkt an die ESI-
Quelle gekoppelt war, die reaktiven Alkylzirconiumkationen
7 der wachsenden Polymerkette der homogenen Ziegler-
Natta-Polymerisation von Ethen aus der Reaktionslosung
nachweisen, massenspektrometrisch charakterisieren und
ihre katalytische Aktivitidt direkt durch Gasphasenreaktion
mit Ethen zeigen.
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Eine Losung von 17.2 umol (5.0 mg) [Cp,ZrCl,] und 20.6 umol

MAO (34.0 pL, 10-proz. Losung in Toluol) in wasserfreiem,

entgastem Toluol (5.0 mL) wurde unter Argon mit wasserfreiem,

entgastem MeCN durch eine duale Spritzenpumpe mit dersel-
ben Flussgeschwindigkeit von 5 pLmin~' in einem effektiven

Mikromischer, der direkt an die Ionenquelle gekoppelt war,

gemischt und kontinuierlich in das Massenspektrometer einge-

speist (Abbildung 1). Die Flussgeschwindigkeit kann im Bereich
von 2.5 bis 100 uL min~! variiert werden. Reaktionszeiten von

0.3-28 s werden erreicht, wenn man den Mikroreaktor direkt mit

der Spraykapillare verbindet.
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[18] Die ESI-MS- und ESI-MS/MS-Messungen wurden mit einem
hochauflosenden Hybrid-Quadrupol- und orthogonalen Flug-
zeitmassenspektrometer (Q-TOF Premier, Micromass) mit
einer konstanten Temperatur des Vernebelungssprays von
150°C durchgefiihrt. Positive Ionen wurden bei einem Konus-
und Extraktorpotential von 10 bzw. 4.5 V gemessen; der Mess-
bereich war m/z 200-3000. Die Reaktionslosungen wurden
direkt mit einer Mikrospritzenpumpe in die ESI-Quelle mit
Flussgeschwindigkeiten von 5-100 pLmin~' eingespeist. Fiir
MS/MS-Experimente wurde ein bestimmtes Ion im Quadrupol
Q, massenselektiert und dann durch StoBaktivierung (CID) mit
Argon in der Stof3zelle fragmentiert. Die Produkt-Ionen wurden
mit dem hochauflsenden orthogonalen TOF analysiert.

[19] Da Zr fiinf Isotope — *Zr (51.45%), *'Zr (11.22%), *Zr
(17.15%), **Zr (17.38 %) und **Zr (2.80 % ) — hat, werden die Zr-
haltigen Spezies als Cluster von isotopologen lonen detektiert.

[20] Ein entsprechendes CID-Verhalten wurde beschrieben in
Lit. [12] und in: C. S. Christ, Jr., J. R. Eyler, D. E. Richardson, J.
Am. Chem. Soc. 1990, 112, 596-607.

[21] Chen und Mitarbeiter!? berichteten, dass hohe Spannungen zur
Fragmentierung dhnlicher Cluster notwendig seien, wahrend wir
eine leichte Abspaltung von MeCN beobachteten.

[22] Es ist bekannt, dass 5 mit MeCN zu einem stabilen Produkt mit
miz 276, [Cp,Zr—N=C(CH,;),]*, reagiert: Y. W. Alelyunas, R. F.
Jordan, S.F. Echols, S. L. Borkowsky, P. K. Bradley, Organo-
metallics 1991, 10, 1406 —1416. Wir fiihrten die gleiche Reaktion
wie von Jordan et al. beschrieben, aber mit MAO als Cokata-
lysator durch. Selbst nach 48 h konnten wir kein Produkt der
Reaktion von 5 mit MeCN in CID-Experimenten beobachten.

[23] Die ,,T-Wave“-Stozelle des Q-TOF Premier erméglicht die
Beobachtung von mehreren Produkt-lonen: K. Giles, S.D.
Pringle, K. R. Worthington, D. Little, J. L. Wildgoose, R. H.
Bateman, Rapid Commun. Mass Spectrom. 2004, 18,2401 -2414.

[24] Das Argon in der Stofizelle wurde gegen hochreines Ethen
ausgetauscht. Der Ethendruck betrug zwischen 3 x 10~ und 2 x
107% mbar. Beispiele fiir QqTOFs: 1. V. Chernushevich, A. V.
Loboda, B. A. Thomson, J. Mass Spectrom. 2001, 36, 849 —865.

[25] Durch MehrfachstoBe in der StoBkammer wurde die Intensitéit
des primdren Ions um 50-70 % abgeschwécht, um die Ausbeute
an Produkt-Ionen zu erhohen und durch Stofle sowohl Aus-
gangsverbindungs- als auch Produkt-lonen abzukiihlen. Die
Ionen sollten deshalb keinen oder nur einen vernachléssigbaren
Uberschuss an innerer Energie enthalten. Ahnliche Untersu-
chungen von Ionen-Molekiil-Reaktionen: A. E. P. M. Sorrilha,
L.S. Santos, F. C. Gozzo, R. Sparrapan, R. Augusti, M. N.
Eberlin, J. Phys. Chem. A 2004, 108, 7009 -7020, zit. Lit.

[26] Die Gasphasenreaktion mit 5 erforderte eine sorgfiltige Ab-
stimmung der Quadrupol-, Stofzellen- und TOF-Potentiale, um
der H,-Abspaltung zu Allylderivaten, die katalytisch inaktiv
sind, vorzubeugen.'??” Obwohl die H,-Abspaltung in diesem
speziellen Experiment nicht vollstandig unterdriickt werden
konnte — wie Abbildung 4a zeigt —, beobachteten wir die Pro-
dukt-Tonen von bis zu vier C,H,-Insertionen (n = 1-4) mit hoher
Intensitét.

[27] P. Watson, D. C. Roe, J. Am. Chem. Soc. 1982, 104, 6471 —6473;
J. E. Bercaw, D. L. Davia, P. T. Wolczanski, Organometallics
1986, 5, 443 —450.

[28] Eine Losung von 1 und MAO (Lit. [17]) in Toluol wurde mit
Ethen-gesittigtem Toluol mit einer dualen Spritzenpumpe mit
derselben Flussgeschwindigkeit in einem effektiven Mikromi-
scher unter Argon gemischt. Die reagierende Losung wurde in
einem zweiten Mikromischer, der direkt an die Ionenquelle
gekoppelt war, mit MeCN gemischt und die Losung kontinu-
ierlich in das Massenspektrometer eingespeist (Abbildung 1).
Die Reaktionszeit betrug ca. 0.3s (50 pLmin™!) bis 1.7s
(5 uLmin™") in Abhingigkeit von der Fordergeschwindigkeit
und dem Volumen der Kapillare, die beide Mikromischer mit-

[29]

(30]

(31]

Angewandte

einander verbindet: Mikromischer (MR)): Kapillare 75 pm (ID),
L=3cm, V=22x10""m’ Mikromischer (MR,): Kapillare
75 um (ID), ,=5 cm.

a) R. F. Jordan, W. E. Dasher, S. F. Echols, J. Am. Chem. Soc.
1986, 108,1718-1719; b) R. F. Jordan, C. S. Bajgur, R. Willett, B.
Scott, J. Am. Chem. Soc. 1986, 108, 7410-7411.

Bei Variation der Lénge /, der Kapillare, die die Reaktionslo-
sung vom zweiten Mikromischer nach dem Vermischen mit
MeCN zur Ionenquelle bringt (Abbildung 1, rechts unten), ver-
anderte sich die relative Intensitét der beobachteten Ionen nicht
wesentlich.

D. B. Jacobson, B. S. Freiser, J. Am. Chem. Soc. 1983, 105, 736 -
742.
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